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What is a Markov State Model?
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Where to start with Markov Models?

https://github.com/markovmodel/pyemma_tutorials

https://www.livecomsjournal.org
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Motivation

“Everything should be made as simple as possible, but not 
simpler.”

https://quoteinvestigator.com/2011/05/13/einstein-simple/
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Timescales and lengthscales
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Quantum Mechanics

“Everything should be made as simple as possible, but not 
simpler.”

QM/MM

Å C = C

Molecular Mechanics

Coarse grained

https://quoteinvestigator.com/2011/05/13/einstein-simple/

1 mio +  particles

a few atoms

https://quoteinvestigator.com/2011/05/13/einstein-simple/
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Molecular dynamics

ΔF

Binding dynamicsConformational 
dynamics

• Local Motions (0.01 - 5 Å, 10-15 - 10-1 s) 
◦ atomic fluctuations 
◦ sidechain motions 
◦ loop motions 

• Large-Scale Motions (> 5Å, 10-7 to 104 s) 
◦ helix coil transitions 
◦ dissociation/association 
◦ folding and unfolding 

Ligand Video Courtesy of Jordi Juarez Jimenez
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Conformational dynamics

Alanine dipeptide

φ ψ

φ
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What is metastability?

Ω = space of all possible configurations
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What is Ergodicity

No segments of the space Ω  are dynamically disconnected 

and  

an infinitely long simulation will have visited every state x in Ω 
infinitely many times. 

lim
t!1

Ât = Eµ(A)

We can use time averages to observe conformational averages!



�10

Langevin dynamics

 

V(x)

x in a.u.

https://quoteinvestigator.com/2011/05/13/einstein-simple/
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Langevin dynamics

 

V(x)

https://quoteinvestigator.com/2011/05/13/einstein-simple/
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What is Reversibility?

Simulations fulfil the detailed-balance condition.

At equilibrium the probability of jumping from x to any y, is the same 
as jumping from y to x.  

µ(x)p(x,y; ⌧) = µ(y)p(y,x; ⌧)

µ(x) =
exp(��V (x))

Z(�)
Z =

Z

⌦
exp(��V (x))dx
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Typical questions?

 

What is the transition rate 
between the metastable 
states?  

What is the  free energy 
difference between the 
metastable states?

µ(x) =
exp(��V (x))

Z(�)
Z =

Z

⌦
exp(��V (x))dx

G = �kBT ln(µ(x))

https://quoteinvestigator.com/2011/05/13/einstein-simple/
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Simulating 50k atoms on a….

NVIDIA GTX1080

~350 ns/d

Anton Mark II

~70 μs/d

How can we reliably estimate equilibrium properties from 
simulations that are shorter than that of the time scale of the 
equilibrium process?

Model molecular simulations as a Markov jump process between 
metastable states.
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MSM construction overview
1. Generate trajectories e.g. through MD
2. Discretise trajectories (two steps (a) dimensionality reduction (b) clustering

3. Estimate transition matrix (MSM) e.g. Baysian 
MSM, HMM

4. Analyse transition matrix (MSM) e.g. stationary properties, timescales, 
reactive flux, PCCA+ etc.

1 2 3 4

1

2

3

4

A B C D0 25 50 75 100
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Trajectory generation
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Dimensionality reduction — choosing features

φ

ψ

2D features -> we can go straight to clustering
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Dimensionality reduction — choosing features

dimensionality of features >4? -> dimensionality reduction
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Dimensionality reduction — TICA - PCA - VAMP

TICA: J. Chem. Phys. 139, 015102 (2013);

VAMP: J. Chem. Phys. 150, 194108 (2019)

PCA: Linear combination of input features maximising the variance
TICA: Linear combination of input features maximising time autocorrelation
VAMP: Variational approach for Markov Process, true for non-equilibrium data

Project features onto low 
dimensional subspace
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Discretisation

Dimensionality reduction and discretisation require a lot of 
parameter optimisation. It is necessary to spend a good 
amount of time on hyper parameter optimisation. 
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The count matrix

The countmatrix contains the number 
of times a transition from state i to 
state j is observed. 

X
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Transition matrix estimation

So what is a conditional probability?

= T

ciiP
i cij

cijP
i cij

The transition matrix contains 
conditional probabilities, of going 
from state i to state j. 
Usually, a reversible estimation is 
used to ensure detailed balance.

Tij(⌧) = P[x(t+ ⌧) 2 Sj |x(t) 2 Si]

Writing the transition matrix as a Markov jump process:

μiPij = μjPji
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Conditional probabilities

What is the probability of rolling 
a die 

and its value is less than 4,

knowing (given) that the number is odd.

P(A |B) =
P(A ∩ B)

P(A)

P(A |B) =
P(B |A)P(A)

P(B)
Bayes’ theorem
evidence

hypothesis



�24

Reversible Transition matrix estimation from counts
Objective: find the most likely reversible transition matrix, based 
on the observed counts using Bayes

P(T|C) =
Y

i,j

t
cij
ij

We use log-likelihoods instead: Q = logP(T|C) =
X

i,j

cij log tij

@Q

@xij
= 0

Maximise the log-likelihood, by taking its derivative and using the constraint, that 
detailed balance must hold, i.e.

@Q

@xji
=

cij + cji
xji

� ci
xi

� cj
xj

Prinz, J.-H. et al (2011) Markov models of molecular kinetics: Generation and 
Validation. J. Chem. Phys., 134 . p. 174105.

P(A |B) =
P(B |A)P(A)

P(B) hypothesis

evidence Observed counts

Transition matrix

Likelihood
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Transition matrix estimation

Obtaining error estimates on transition matrices and 
observables taken from them will be covered in more detail in 
the afternoon.

= T

ciiP
i cij

cijP
i cij

Tij(⌧) = P[x(t+ ⌧) 2 Sj |x(t) 2 Si]
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The Prinz potential

A0 25 50 75 100B C D
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Varying the lagtime

ç ç
ç

A B C D A B C D

varying the 
lagtime

⌧ = 2 ⌧ = 10

Tij(⌧) = P[x(t+ ⌧) 2 Sj |x(t) 2 Si]

The transition matrix is: 
- a stochastic matrix (rows sum to 1) 
- has interesting properties that let us understand 

stationary and dynamic behaviour of the system
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The transition matrix has lots of interesting properties

A0 25 50 75 100B C D

�1 = 1 > �2 > �3, . . . , > �n

çç

A B C D

⌧ = 10

ç

= λT v v

μ(x)

= λTT v v

right 
eigenvector

left 
eigenvector

V(x)
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Obtaining timescales from the MSM

�1 = 1 > �2 > �3, . . . , > �n

ti = � ⌧

ln�i

Prinz, J.-H. et al (2011) Markov models of molecular kinetics: Generation and 
Validation. J. Chem. Phys., 134 . p. 174105.

gap
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Identifying dynamic properties from the MSM

A B C D0 25 50 75 100

Tri = �iri

TTli = �ili
l2

r2
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Validation with the Chapman Kolmogorov test

T(kτ) = T(τ)k
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More validation

Build more than 1 MSM!

try and maximise your timescale!

CK test!

?
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Coarse graining with PCCA

Noé et al. PNAS, 106, 19011 (2009) 

PCCA++ 

Or hidden Markov 
Models can be used for 
coarse graining 
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Transition paths and MFPT

0.073

0.095
0.046

0.031 0.152

0.123
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MSM what you should also know….

1

2

34 5

6

7

8

Reversible transition matrix estimator is one of many estimators 
that have been developed for estimating transition matrices, 
there are different/better approaches available

Dimensionality reduction and clustering of 
relevant data is still an open research 
problem.

Variational approaches have been used to try and 
directly approximate the eigenfunctions of the 
propagator Q

Neural networks can be used to learn and 
optimise MSMs

Mardt et al., Nature Communications 9, (2018) 

Nüske, Mey, JCTC 10 (4), 1739-1752
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Thank you

 

https://quoteinvestigator.com/2011/05/13/einstein-simple/

