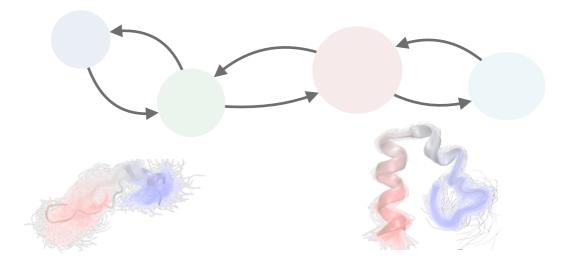


Introduction to Markov State Modelling

Theory, estimation and validation

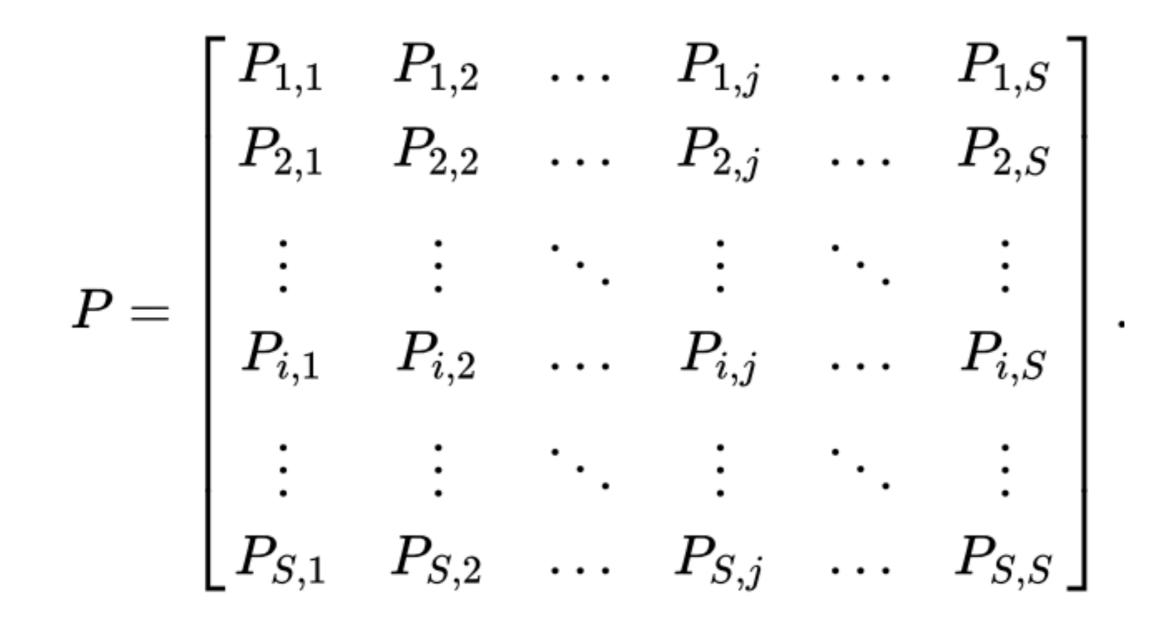


Antonia Mey – antonia.mey@ed.ac.uk

School of Chemistry University of Edinburgh, UK

May 2019 – University of Bristol

What is a Markov State Model?



Where to start with Markov Models?

https://www.livecomsjournal.org

Introduction to Markov state modeling with the PyEMMA software [Article v1.0]

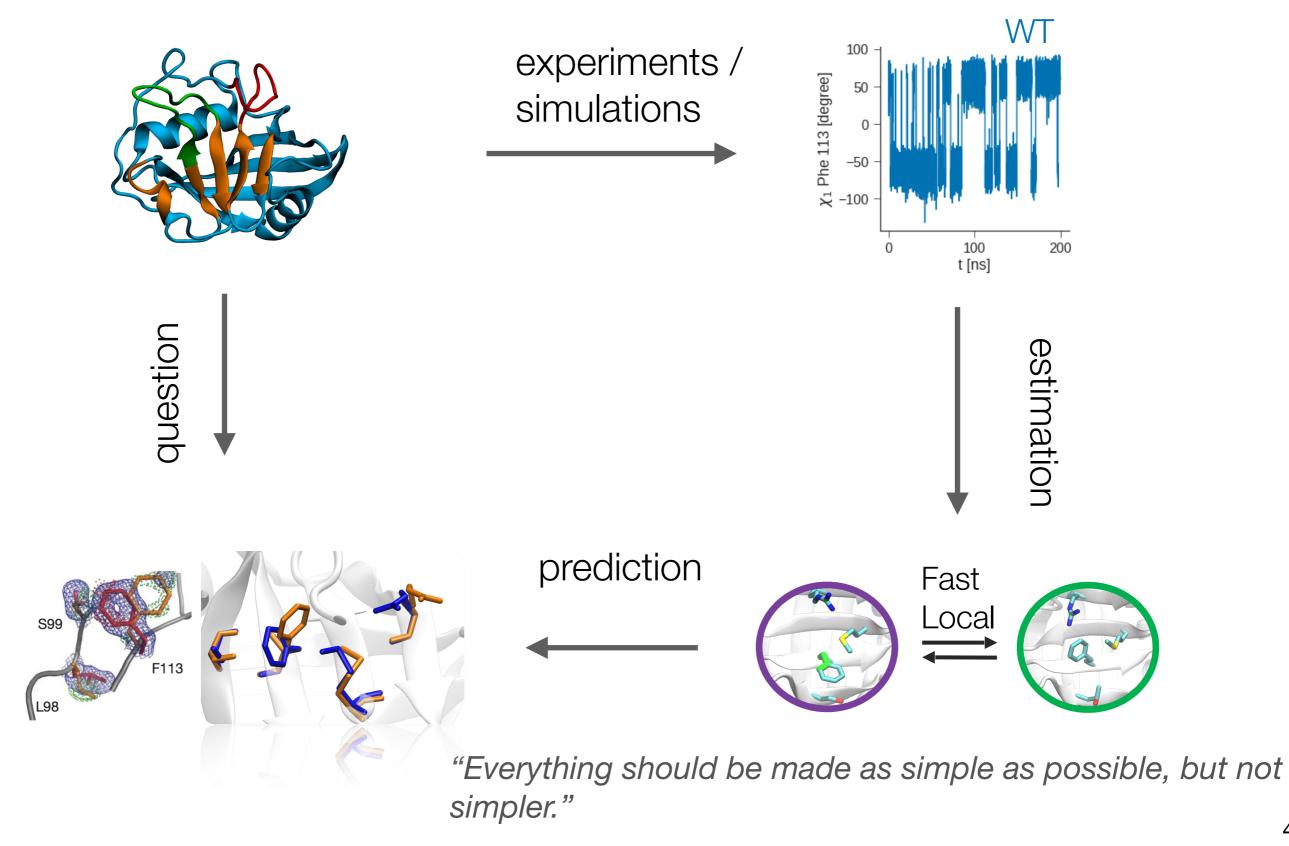
Christoph Wehmeyer^{1†*}, Martin K. Scherer^{1†}, Tim Hempel^{1†}, Brooke E. Husic^{1,2}, Simon Olsson^1, Frank Noe^{1,3*}

https://github.com/markovmodel/pyemma_tutorials

markovmodel / pyemma_tutorials

How to analyze molecular dynamics data with PyEMMA

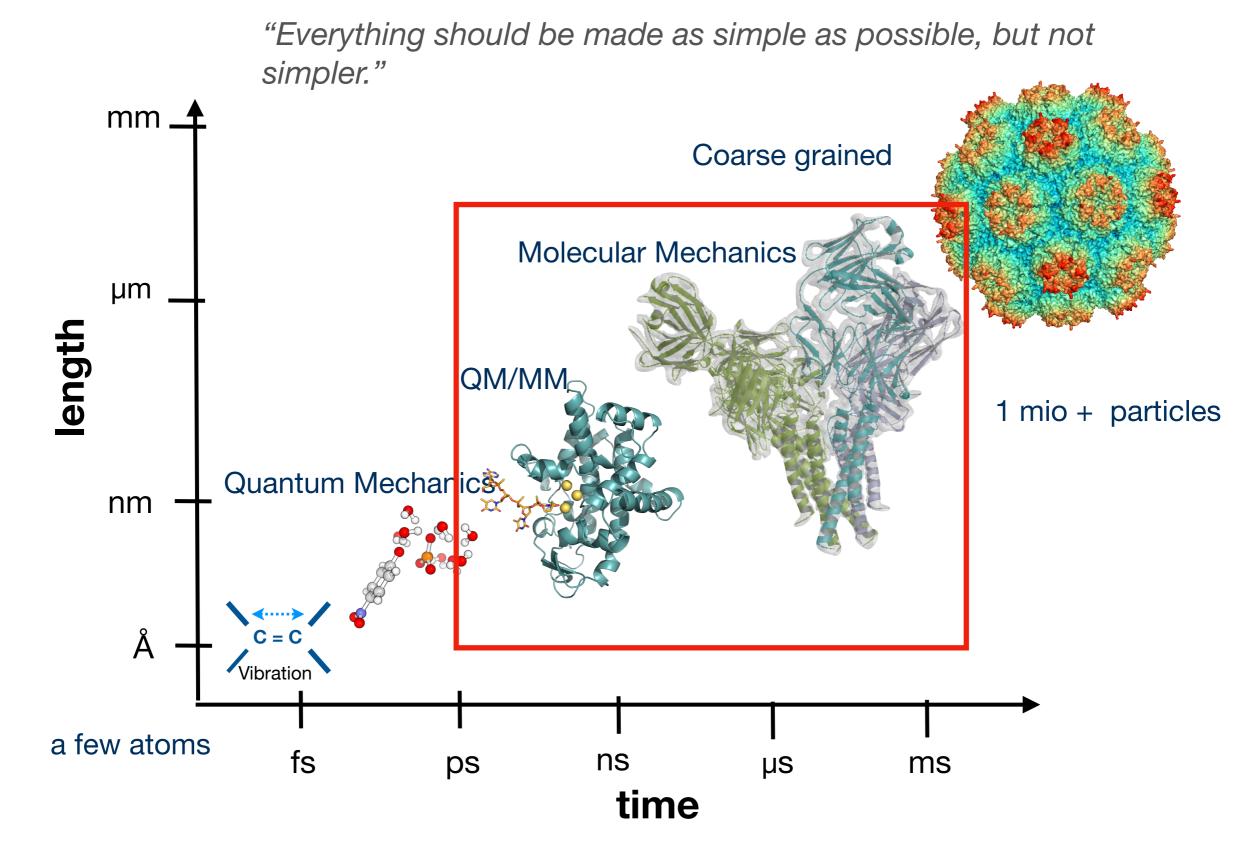
Motivation



https://quoteinvestigator.com/2011/05/13/einstein-simple/

THE UNIVERSITY

Timescales and lengthscales

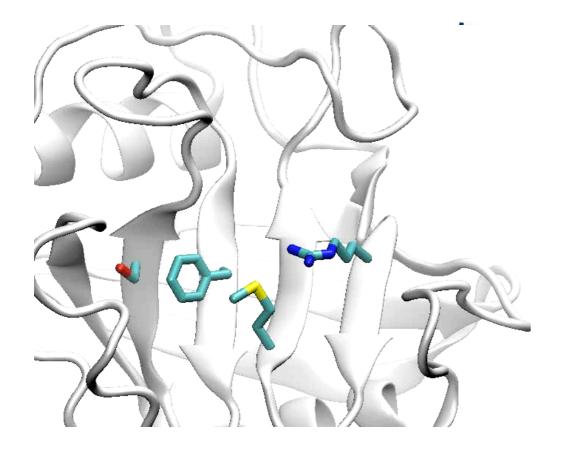


https://quoteinvestigator.com/2011/05/13/einstein-simple/

EDINBURGH

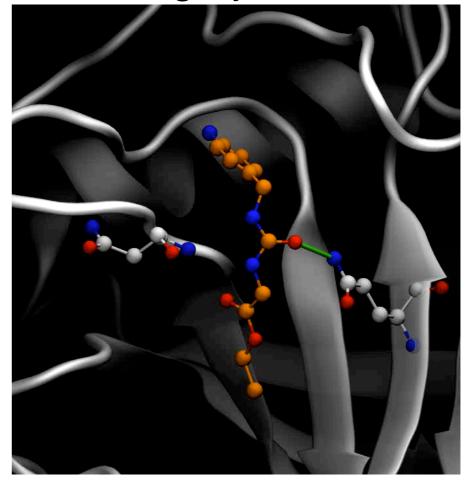
Molecular dynamics

Conformational dynamics



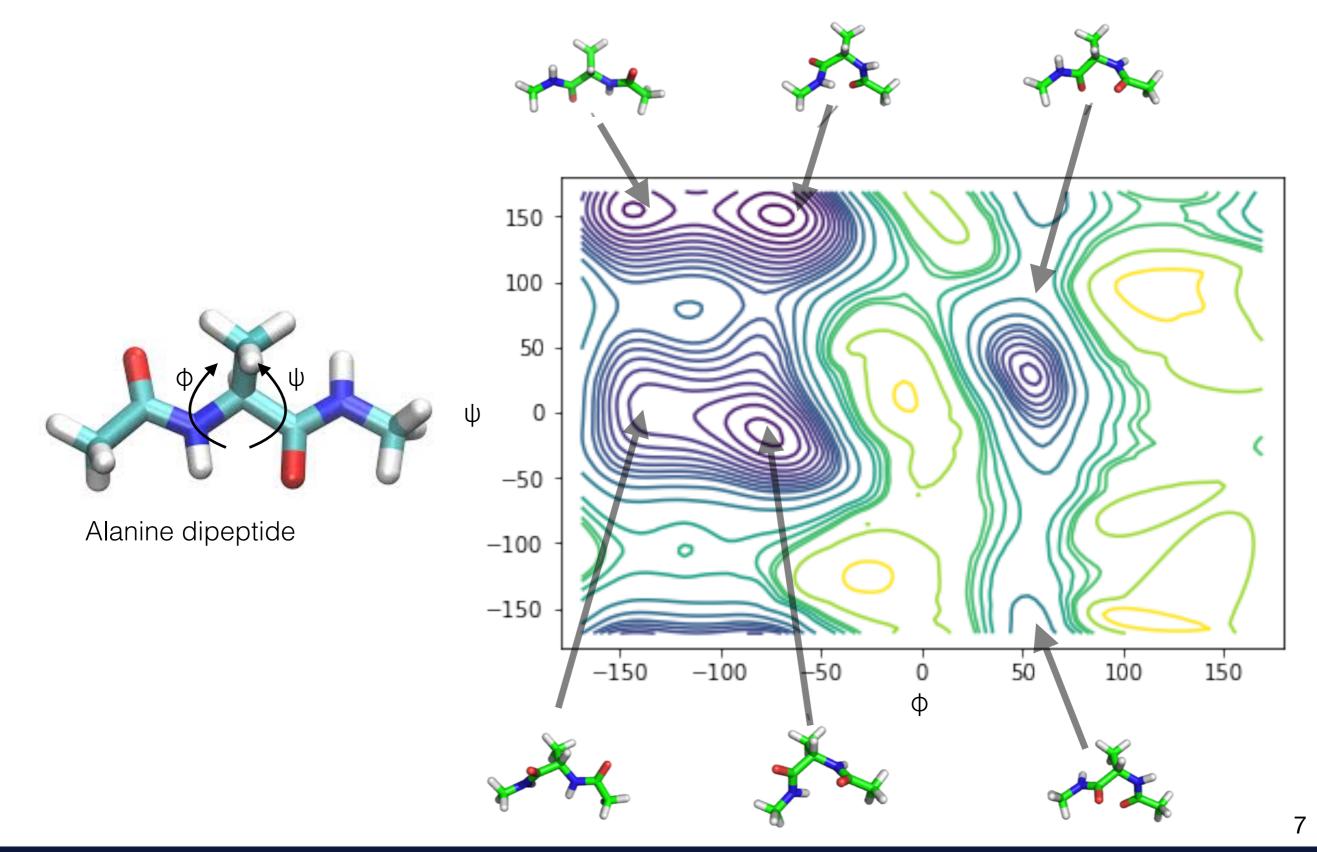
- Local Motions (0.01 5 Å, 10⁻¹⁵ 10⁻¹ s)
 - atomic fluctuations
 - sidechain motions
 - loop motions

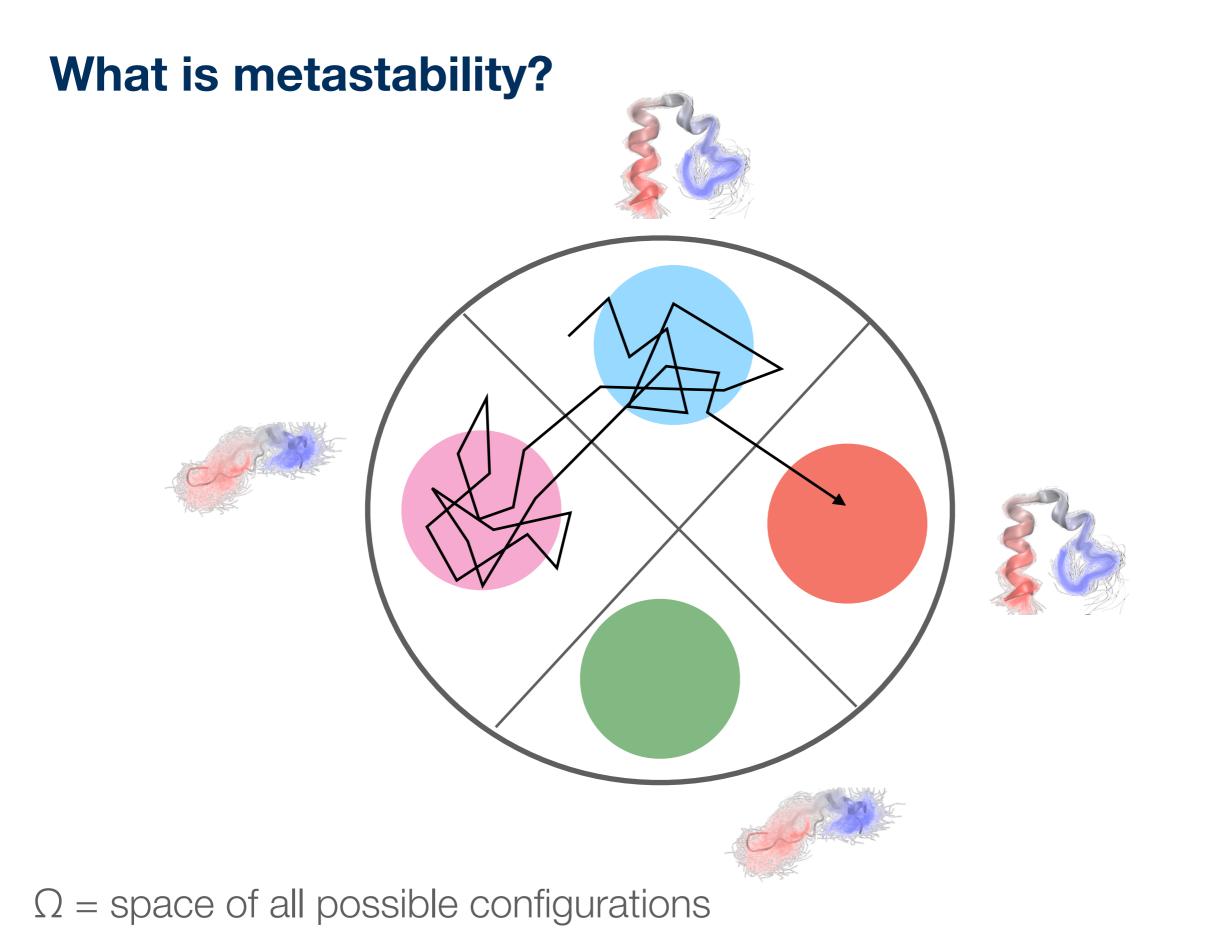
Binding dynamics



- Large-Scale Motions (> 5Å, 10⁻⁷ to 10⁴ s)
 helix coil transitions
 - dissociation/association
 - folding and unfolding

Conformational dynamics





THE UNIVERSITY

No segments of the space Ω are dynamically disconnected

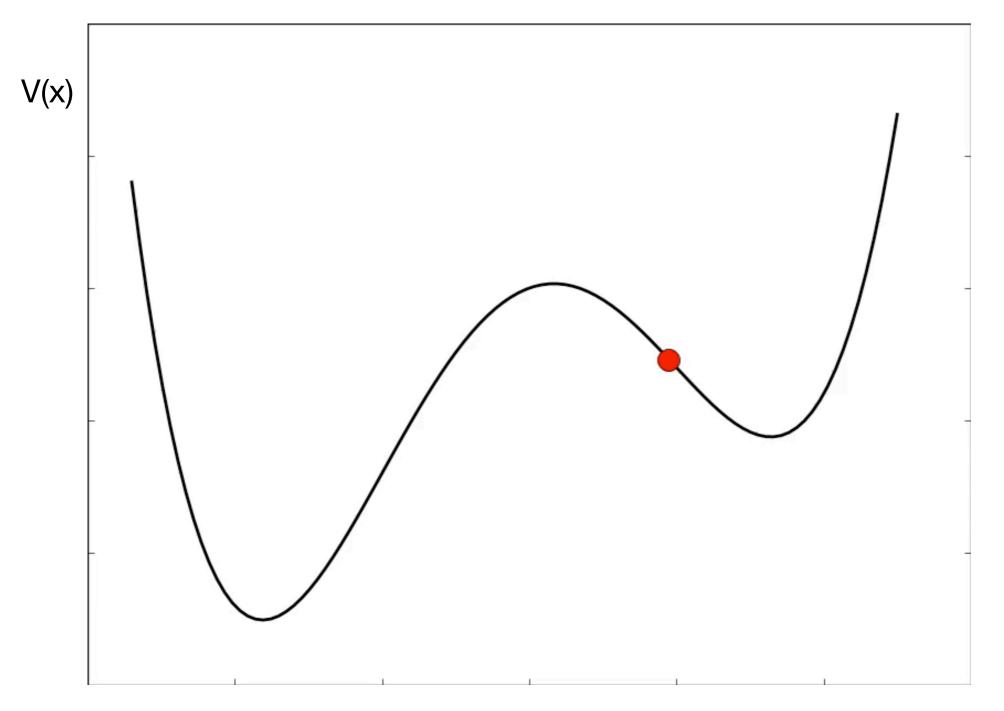
and

an infinitely long simulation will have visited every state \mathbf{x} in Ω infinitely many times.

$$\lim_{t \to \infty} \hat{A}_t = \mathbb{E}_{\mu}(A)$$

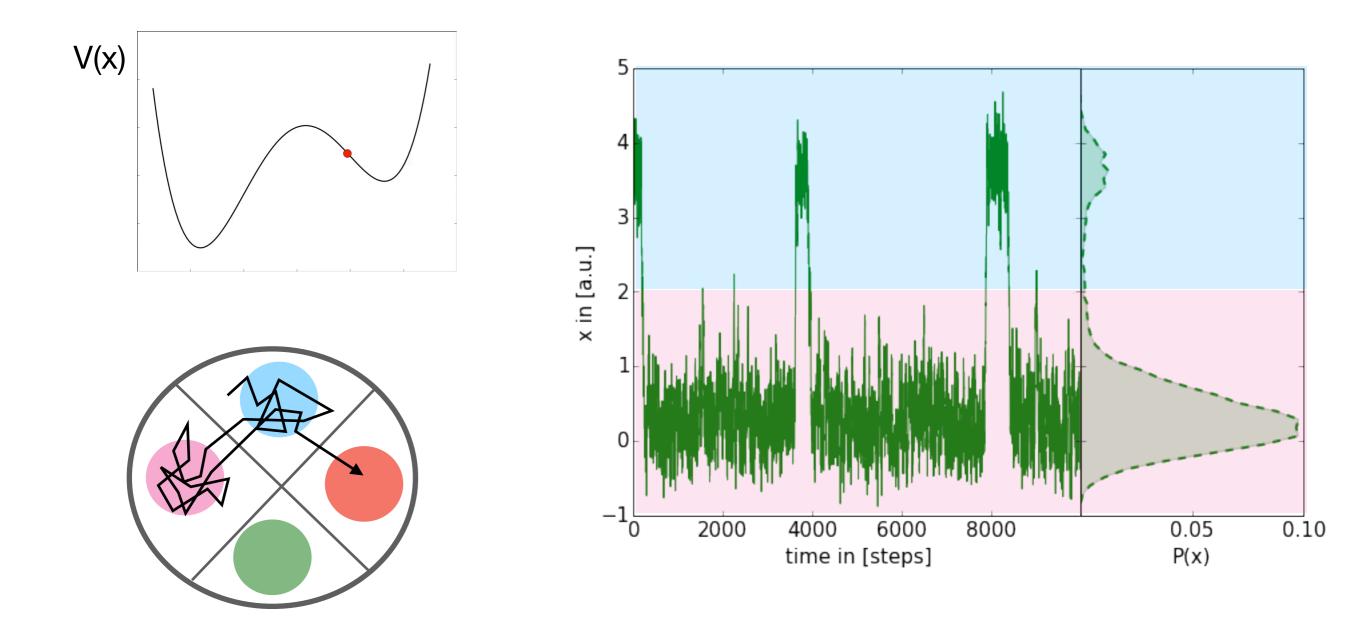
We can use time averages to observe conformational averages!

Langevin dynamics



x in a.u.

Langevin dynamics



What is Reversibility?

Simulations fulfil the detailed-balance condition.

$$\mu(\mathbf{x})p(\mathbf{x}, \mathbf{y}; \tau) = \mu(\mathbf{y})p(\mathbf{y}, \mathbf{x}; \tau)$$
$$\mu(\mathbf{x}) = \frac{\exp(-\beta V(\mathbf{x}))}{Z(\beta)} \qquad Z = \int_{\Omega} \exp(-\beta V(x))dx$$

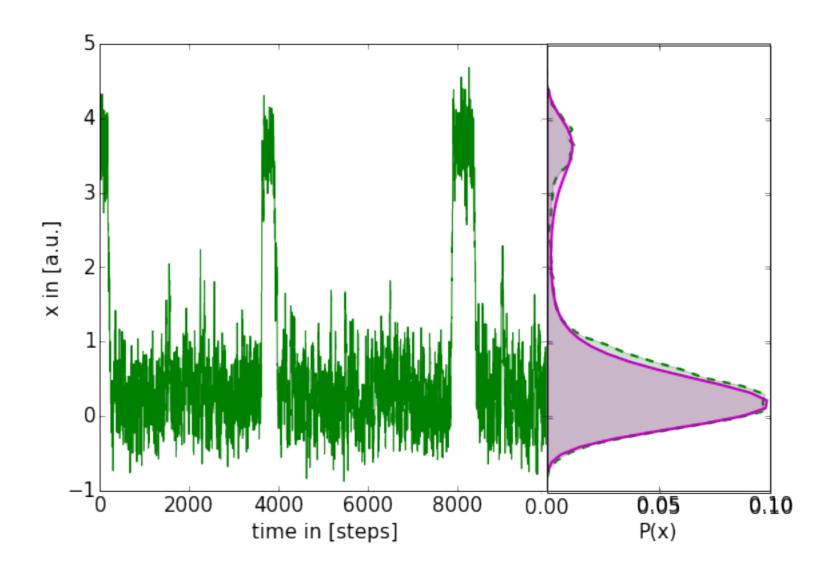
At equilibrium the probability of jumping from **x** to any **y**, is the same as jumping from **y** to **x**.

Typical questions?

What is the *transition rate* between the metastable states?

What is the *free energy difference* between the metastable states?

$$G = -k_B T \ln(\mu(x))$$



$$\mu(\mathbf{x}) = \frac{\exp(-\beta V(\mathbf{x}))}{Z(\beta)} \qquad \qquad Z = \int_{\Omega} \exp(-\beta V(x)) dx$$

THE UNIVERSITY

Simulating 50k atoms on a....

How can we reliably estimate equilibrium properties from simulations that are shorter than that of the time scale of the equilibrium process?

~350 ns/d

~70 µs/d

Model molecular simulations as a Markov jump process between metastable states.

14

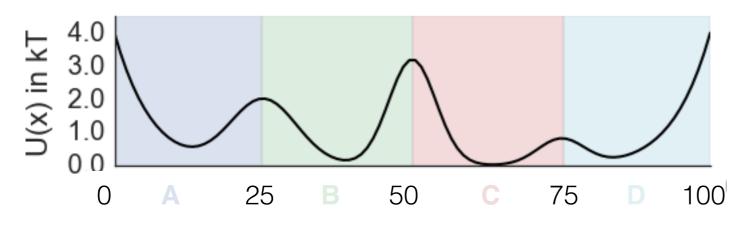
0.10

0.05

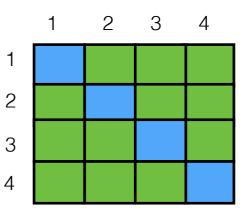
0.00

MSM construction overview

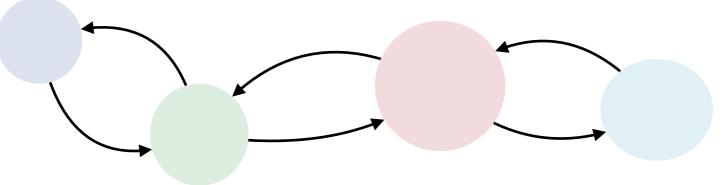
- 1. Generate trajectories e.g. through MD
- 2. Discretise trajectories (two steps (a) dimensionality reduction (b) clustering



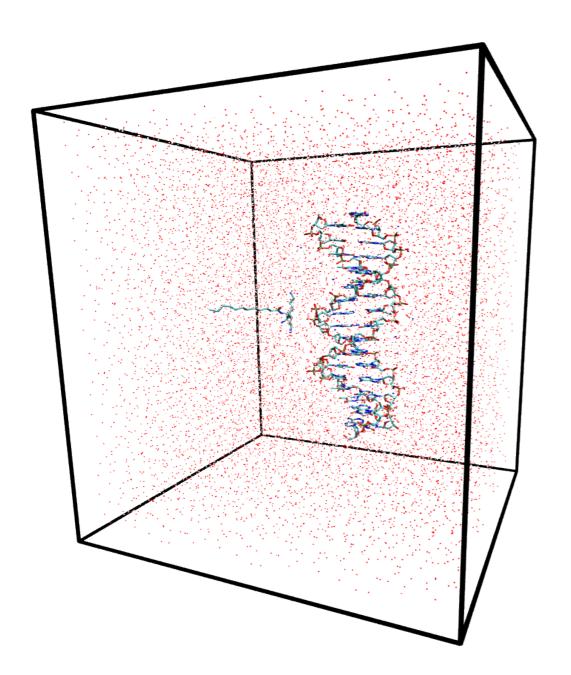
3. Estimate transition matrix (MSM) e.g. Baysian MSM, HMM



4. Analyse transition matrix (MSM) e.g. stationary properties, timescales, reactive flux, PCCA+ etc.



Trajectory generation



$$V = \sum_{\text{bonds}} K(\mathbf{r} - \mathbf{r_{eq}})^2$$

+
$$\sum_{\text{angles}} K_{\theta}(\theta - \theta_{eq})^2$$

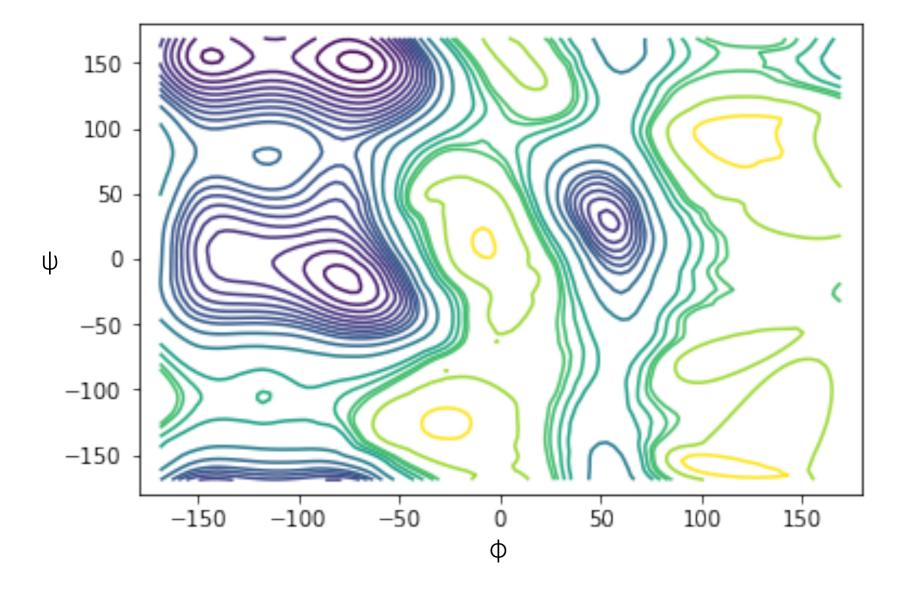
+
$$\sum_{\text{dihedral}} \frac{V_n}{2} [1 + \cos(n\phi - \gamma)]$$

+
$$\sum_{\text{non-bonded}} \left[\frac{A_{ij}}{R_{ij}^{12}} - \frac{B_{ij}}{R_{ij}^6} + \frac{q_i q_j}{\epsilon R_{ij}}\right]$$

THE UNIVERSITY of EDINBURGH

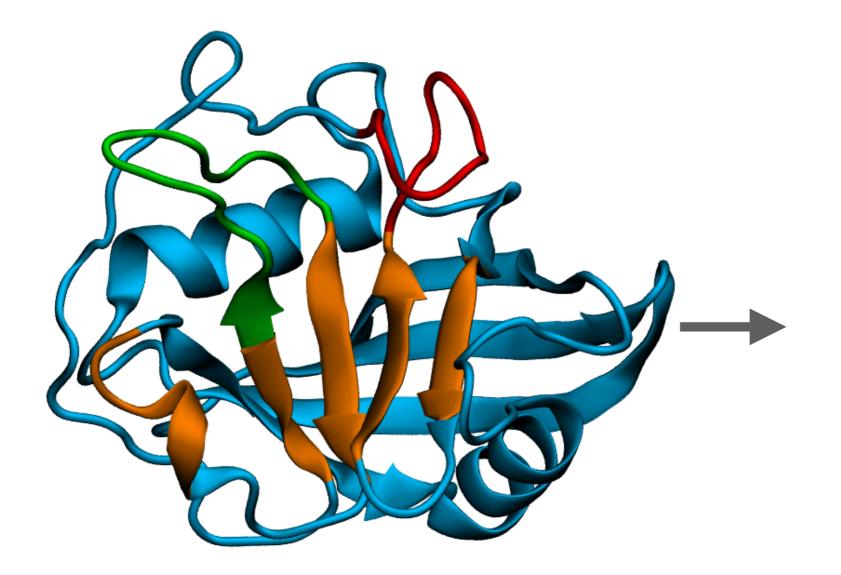
Dimensionality reduction — choosing features

['PHI 0 ALA 2', 'PSI 0 ALA 2']



2D features -> we can go straight to clustering

Dimensionality reduction — choosing features

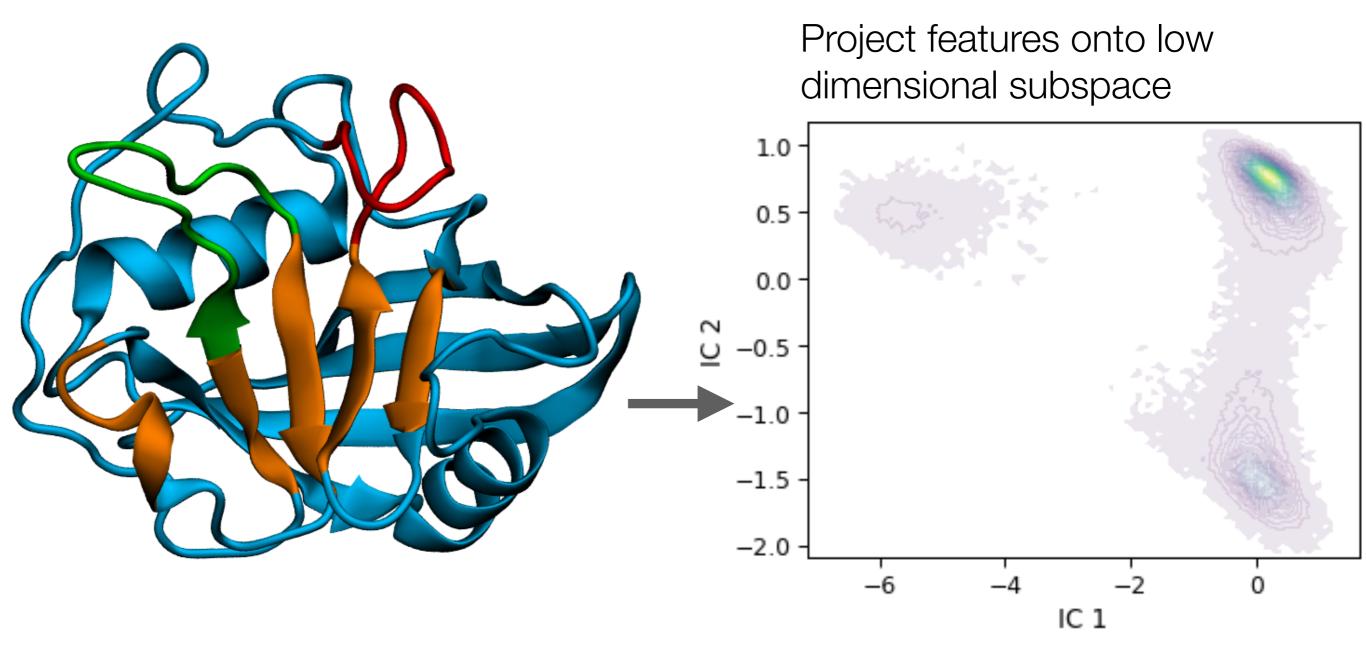


['ATOM: ACE 1 CH3 1 x', 'ATOM: ACE 1 CH3 1 y', 'ATOM:ACE 1 CH3 1 z', 'ATOM:ACE 1 C 4 x', 'ATOM:ACE 1 C 4 y', 'ATOM:ACE 1 C 4 z', 'ATOM: ACE $1 \ 0 \ 5 \ x'$, 'ATOM:ACE 1 0 5 y', 'ATOM:ACE 1 0 5 z', 'ATOM:ALA 2 N 6 x', 'ATOM:ALA 2 N 6 y', 'ATOM:ALA 2 N 6 z', 'ATOM:ALA 2 CA 8 x', 'ATOM:ALA 2 CA 8 y', 'ATOM:ALA 2 CA 8 z', 'ATOM:ALA 2 CB 10 x', 'ATOM:ALA 2 CB 10 y', 'ATOM:ALA 2 CB 10 z', 'ATOM:ALA 2 C 14 x'.

['PHI 0 ALA 2', 'PSI 0 ALA 2']

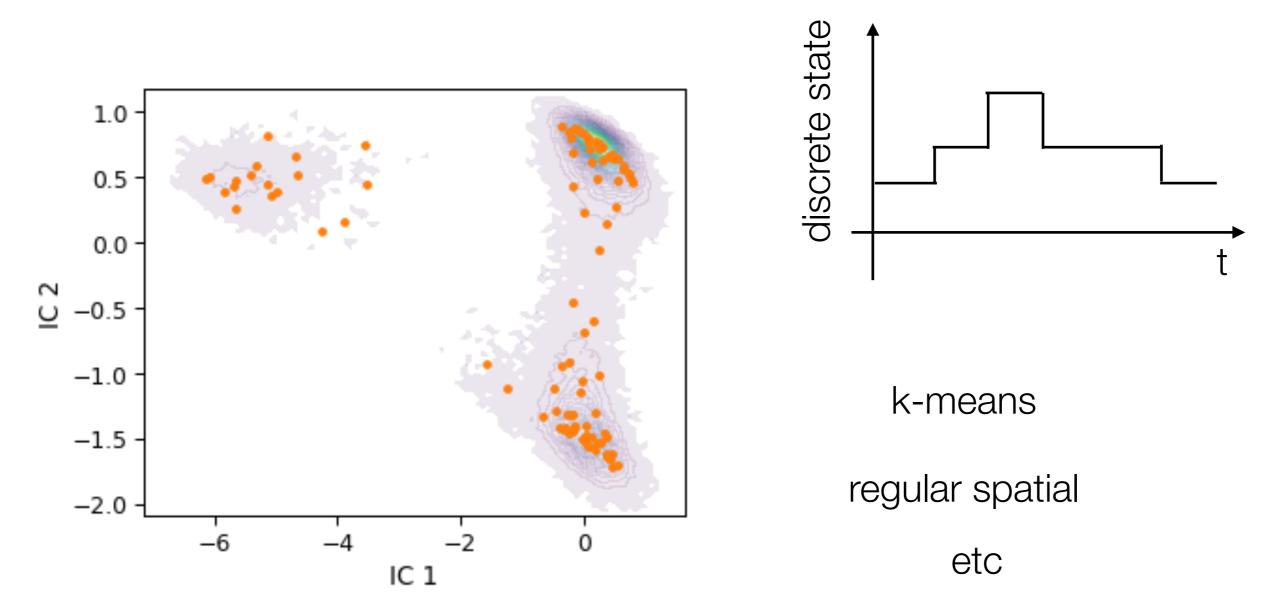
dimensionality of features >4? -> dimensionality reduction

Dimensionality reduction — TICA - PCA - VAMP



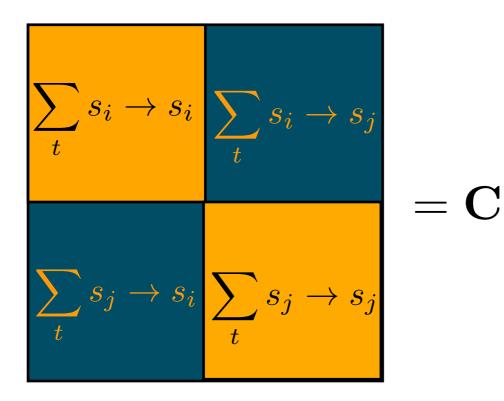
PCA: Linear combination of input features maximising the variance TICA: Linear combination of input features maximising time autocorrelation VAMP: Variational approach for Markov Process, true for non-equilibrium data

Discretisation

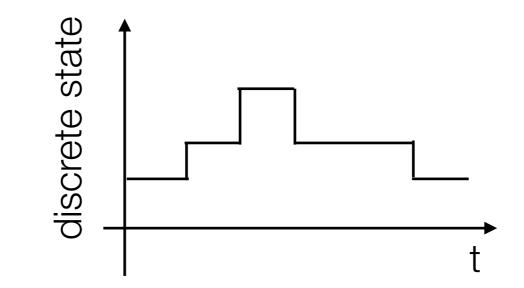


Dimensionality reduction and discretisation require a lot of parameter optimisation. It is necessary to spend a good amount of time on hyper parameter optimisation.

The count matrix

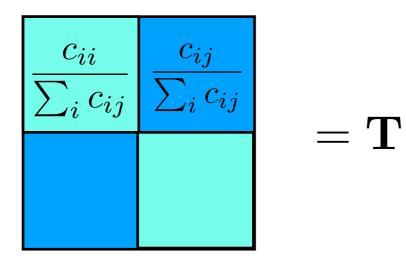


The countmatrix contains the number of times a transition from state *i* to state *j* is observed.



THE UNIVERSITY

Transition matrix estimation



The transition matrix contains conditional probabilities, of going from state i to state j. Usually, a reversible estimation is used to ensure detailed balance.

$$\mu_i P_{ij} = \mu_j P_{ji}$$

Writing the transition matrix as a Markov jump process:

$$T_{ij}(\tau) = \mathbb{P}[\mathbf{x}(t+\tau) \in S_j | \mathbf{x}(t) \in S_i]$$

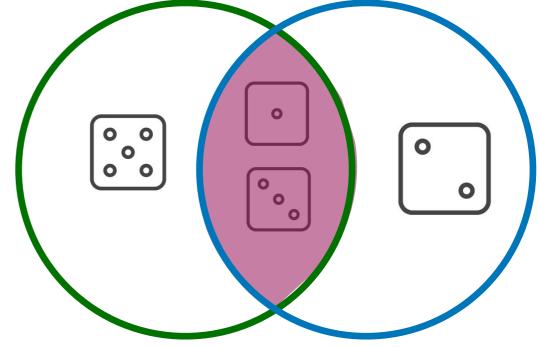
So what is a conditional probability?

Conditional probabilities

What is the probability of rolling a die

and its value is less than 4,

$$P(A \mid B) = \frac{P(A \cap B)}{P(A)}$$



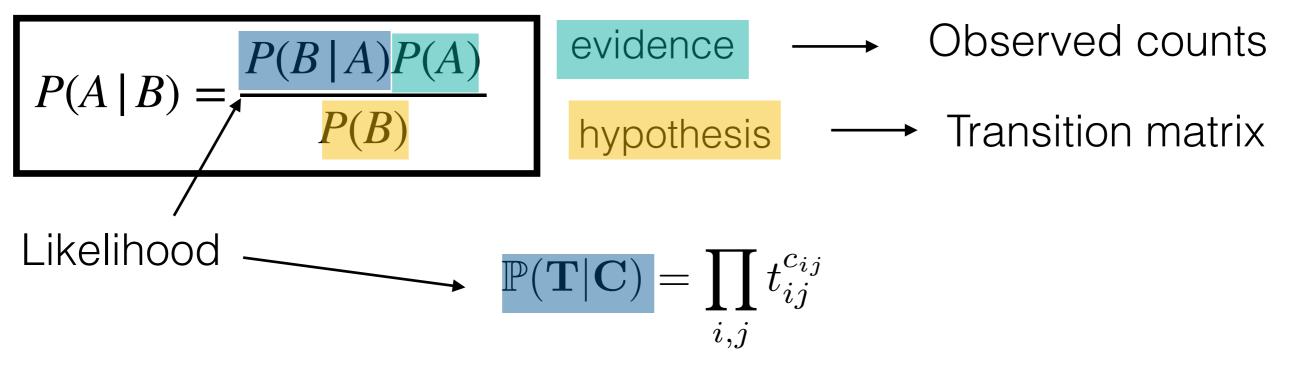
knowing (given) that the number is odd.

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$
Bayes' theorem
hypothesis

THE UNIVERSITY

Reversible Transition matrix estimation from counts

Objective: find the most likely **reversible transition** matrix, based on the **observed counts** using Bayes

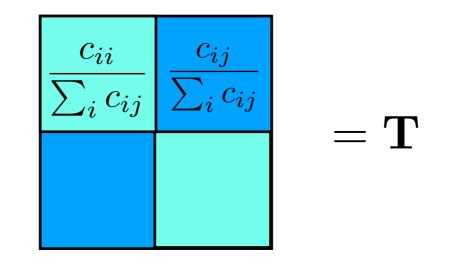


We use log-likelihoods instead: $Q = \log \mathbb{P}(\mathbf{T}|\mathbf{C}) = \sum_{i,j} c_{ij} \log t_{ij}$

Maximise the log-likelihood, by taking its derivative and using the constraint, that detailed balance must hold, i.e. $\frac{\partial Q}{\partial x_{ij}} = 0$

$$\frac{\partial Q}{\partial x_{ji}} = \frac{c_{ij} + c_{ji}}{x_{ji}} - \frac{c_i}{x_i} - \frac{c_j}{x_j}$$

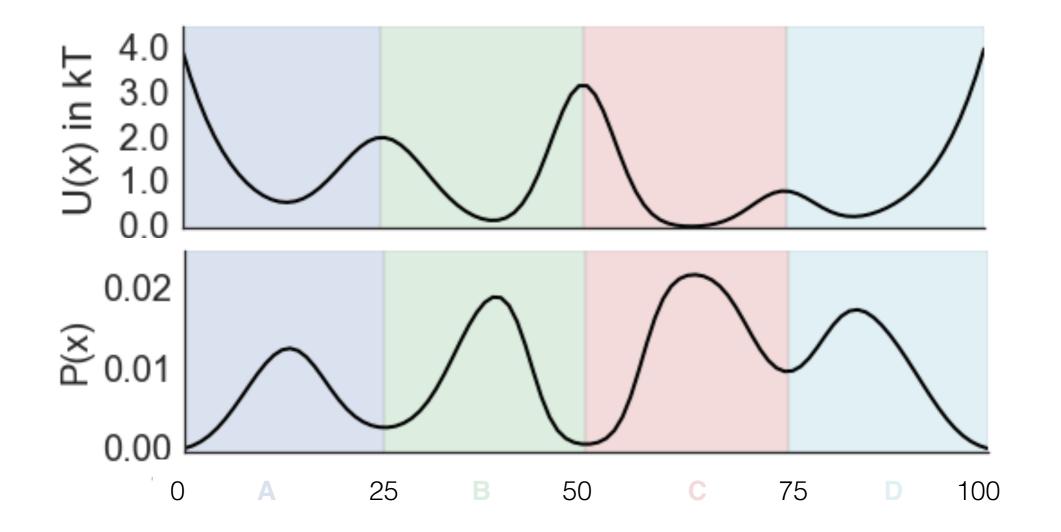
Transition matrix estimation



$T_{ij}(\tau) = \mathbb{P}[\mathbf{x}(t+\tau) \in S_j | \mathbf{x}(t) \in S_i]$

Obtaining error estimates on transition matrices and observables taken from them will be covered in more detail in the afternoon.

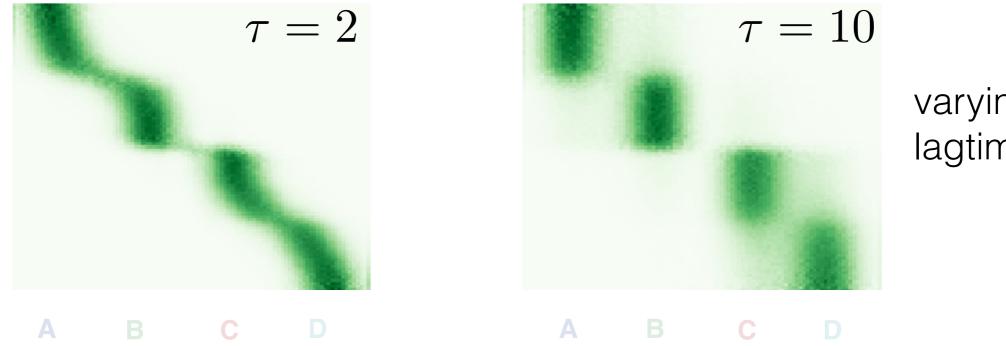
The Prinz potential



THE UNIVERSITY

Varying the lagtime

$$T_{ij}(\tau) = \mathbb{P}[\mathbf{x}(t+\tau) \in S_j | \mathbf{x}(t) \in S_i]$$

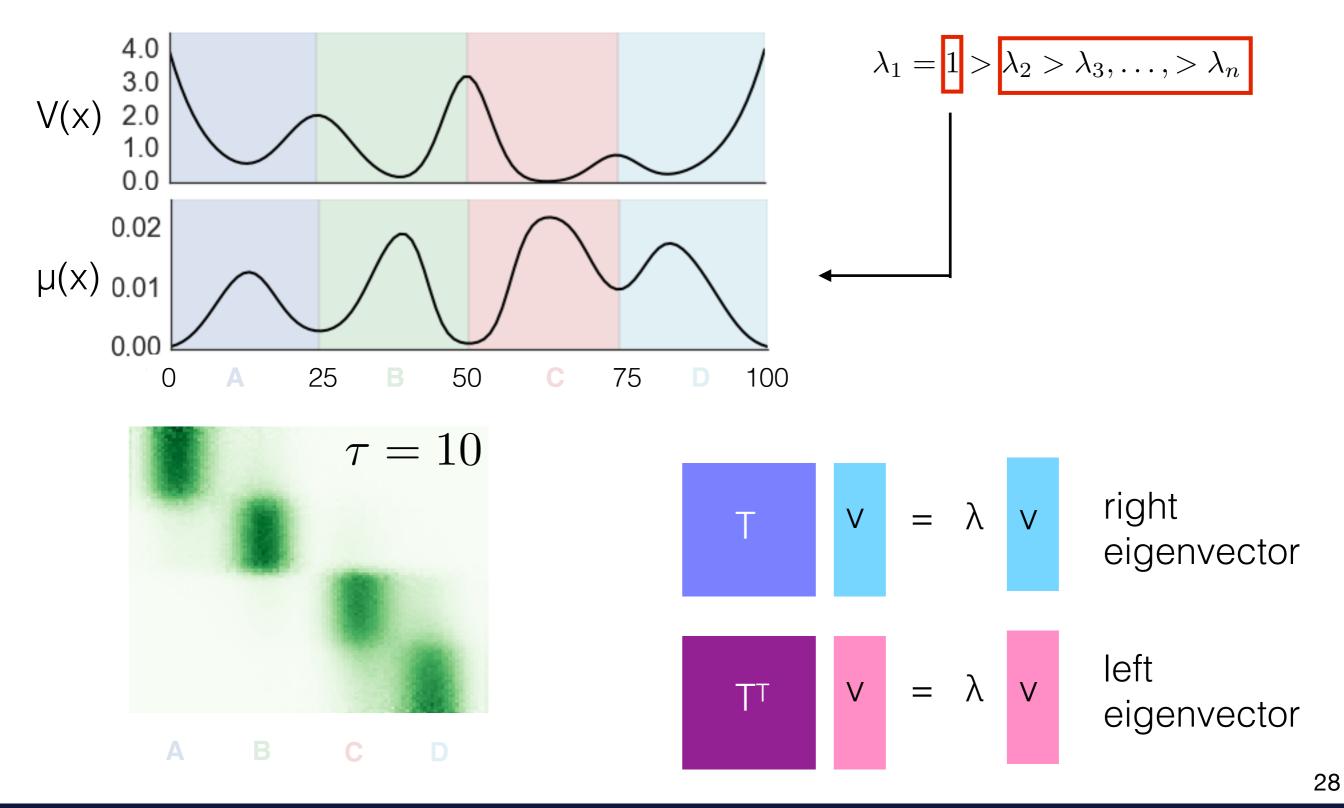


varying the lagtime

The transition matrix is:

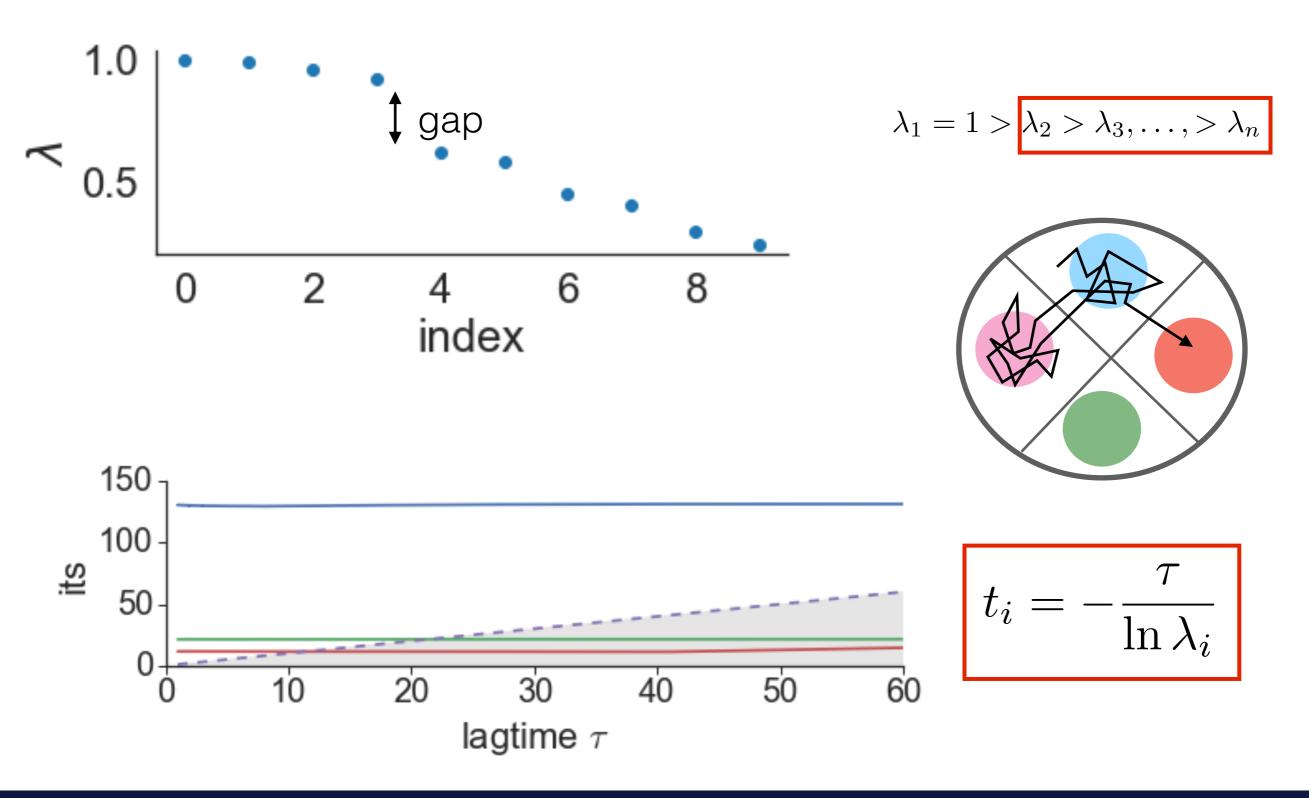
- a stochastic matrix (rows sum to 1)
- has interesting properties that let us understand stationary and dynamic behaviour of the system

The transition matrix has lots of interesting properties



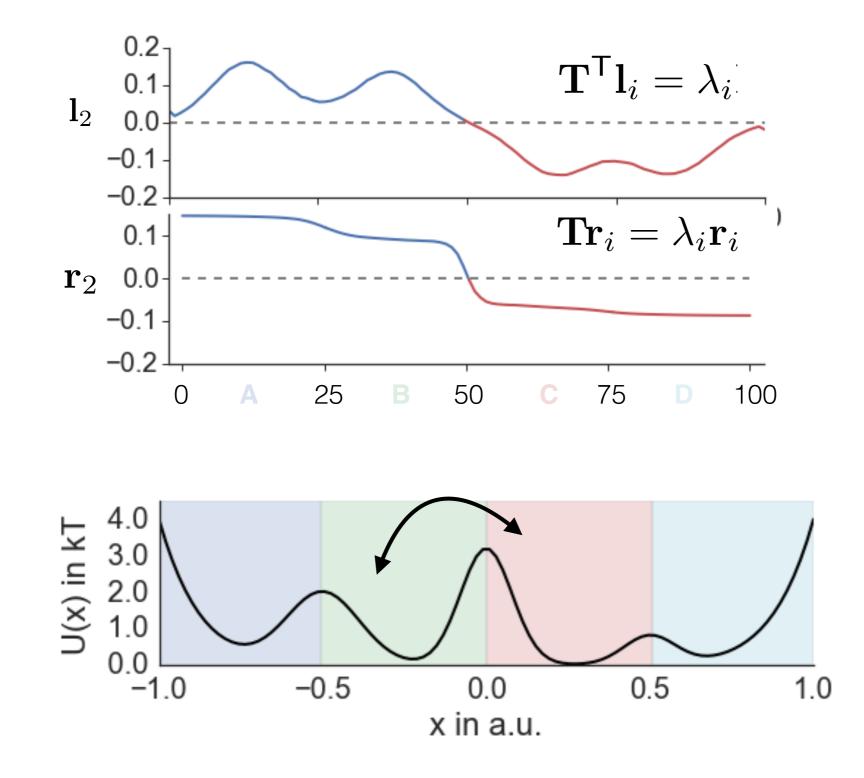
THE UNIVERSITY of EDINBURGH

Obtaining timescales from the MSM



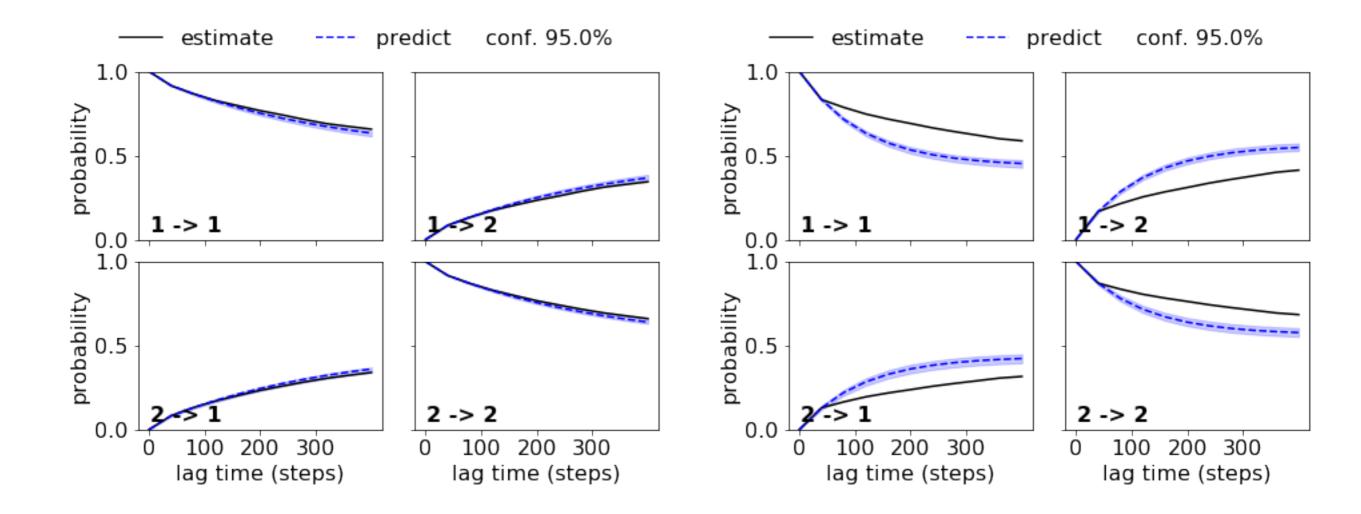
Prinz, J.-H. et al (2011) Markov models of molecular kinetics: Generation and Validation. J. Chem. Phys., 134 . p. 174105.

Identifying dynamic properties from the MSM

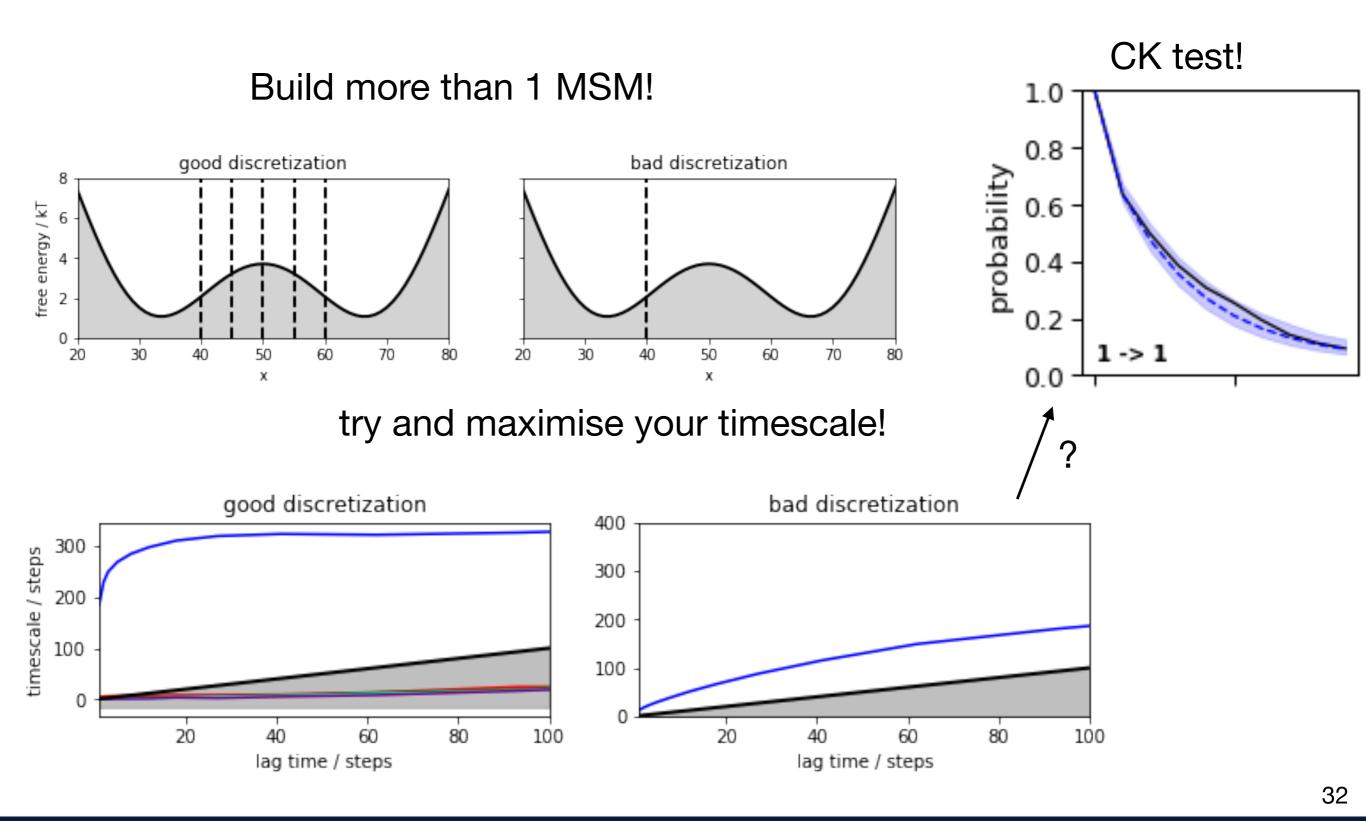


Validation with the Chapman Kolmogorov test

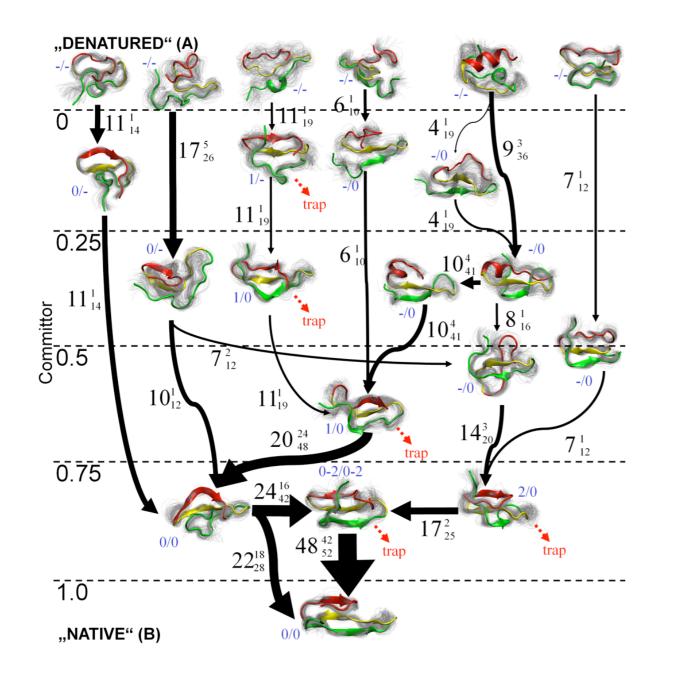
 $T(k\tau) = T(\tau)^k$

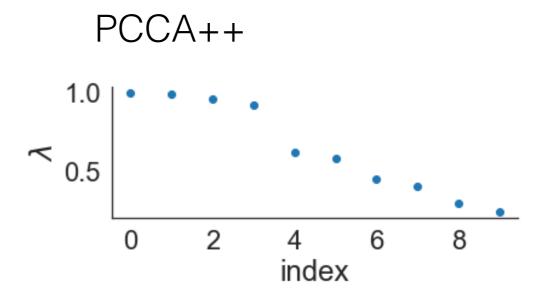


More validation



Coarse graining with PCCA

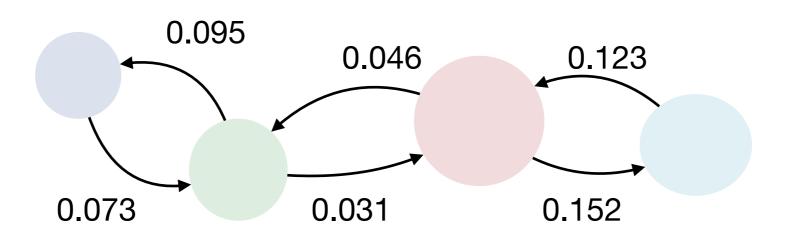


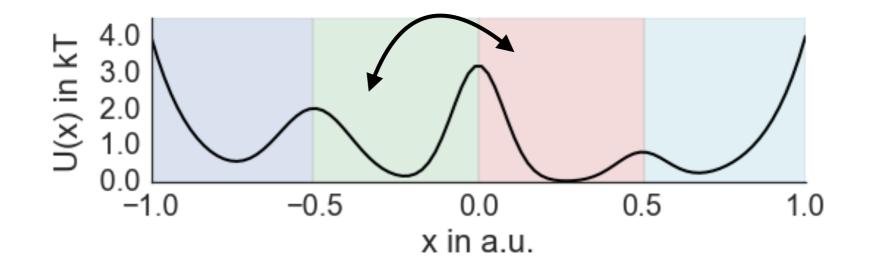


Or hidden Markov Models can be used for coarse graining

Noé et al. PNAS, 106, 19011 (2009)

Transition paths and MFPT

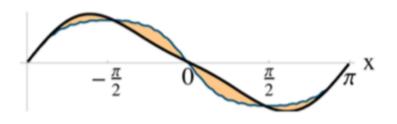


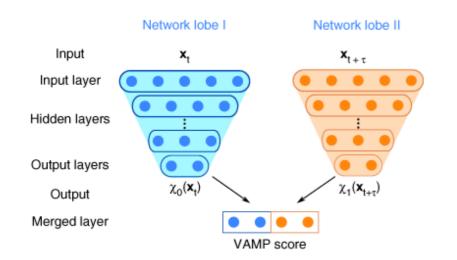


MSM what you should also know....

Reversible transition matrix estimator is one of many estimators that have been developed for estimating transition matrices, there are different/better approaches available

Variational approaches have been used to try and directly approximate the eigenfunctions of the propagator Q Nüske, Mey, JCTC 10 (4), 1739-1752

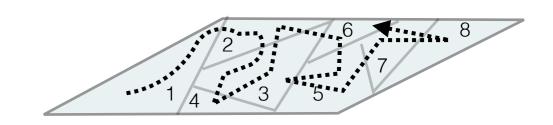




Neural networks can be used to learn and optimise MSMs

Mardt et al., Nature Communications 9, (2018)

Dimensionality reduction and clustering of relevant data is still an open research problem.



Thank you

MOVIE SCIENCE MONTAGE

ACTUAL SOLENCE MONTAGE



