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What is a Markov State Model?
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Where to start with Markov Models?

https://www.livecomsjournal.org

A LiveCoMS Tutorial

Introduction to Markov state
modeling with the PyEMMA software

[Article v1.0]

Christoph Wehmeyer'!*, Martin K. Scherer'f, Tim Hempel'’, Brooke E. Husic'?,
Simon Olsson’, Frank Noe'3"

https://github.com/markovmodel/pyemma_tutorials

L] markovmodel / pyemma_tutorials

<> Code Issues 1 Pull requests 0 Projects 0 Wiki Insights

How to analyze molecular dynamics data with PyEMMA
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Motivation
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“Everything should be made as simple as possible, but not

simpler.” .
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Timescales and lengthscales

“Everything should be made as simple as possible, but not

simpler.”
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a few atoms
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Molecular dynamics

Conformational Binding dynamics
dynamics

[y

e | arge-Scale Motions (> 5A, 10-7 to 104 S)
o helix coil transitions
o dissociation/association
o folding and unfolding

e | ocal Motions (0.01 -5 A, 10-15 - 10-1 S)
o atomic fluctuations
o sidechain motions
o loop motions

Ligand Video Courtesy of Jordi Juarez Jimenez €Y R



Conformational dynamics

Alanine dipeptide
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What is metastability?
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() = space of all possible configurations
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What is Ergodicity

No segments of the space () are dynamically disconnected

and

an infinitely long simulation will have visited every state x in Q)
infinitely many times.

A

lim At — ‘EM(A)

{— 00

We can use time averages to observe conformational averages!
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Langevin dynamics

X In a.u.
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Langevin dynamics

X in [a.u.]
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What is Reversibility?

Simulations fulfil the detailed-balance condition.

w(x)p(x,y;7) = pu(y)ply, x; 7)

1(x) = exp(—pV(x)) 7 = /Qexp(—ﬁ‘/(aj))dx

At equilibrium the probability of jumping from x to any vy, is the same
as jumping fromy to X.
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Typical questions?

What is the transition rate
between the metastable
states”? 3

X in [a.u.]
N)

What is the free energy
difference between the 1}
metastable states?

G = —kBT ln(,u(z))

0 2000 4000 6000 8000  0.00 0.05 0.10
time in [steps] P(x)
exp(—BV (%)) 7 - / ox
— = p(—B8V (z))dz
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Simulating 50k atoms on a....

How can we reliably estimate equiliorium properties from N
simulations that are shorter than that of the time scale of the _
equilibrium process? s
NVIDIA GTX1080 Anton Mark Il °
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~350 ns/d ~70 ps/a

—— Model molecular simulations as a Markov jump process between

metastable states.
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MSM construction overview

1. Generate trajectories e.g. through MD

2. Discretise trajectories (two steps (a) dimensionality reduction (b) clustering
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3. Estimate transition matrix (MSM) e.g. Baysian 3
MSM, HMM 4

4. Analyse transition matrix (MSM) e.g. stationary properties, timescales,
reactive flux, PCCA+ etc.
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Trajectory generation

bonds
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Dimensionality reduction — choosing features

['"PHI O ALA 2', 'PSI 0 ALA 2']

~150 -100 -50 0 50 100 150

2D features -> we can go straight to clustering
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Dimensionality reduction — choosing features
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Dimensionality reduction — TICA - PCA - VAMP

Project features onto low
dimensional subspace

IC1
PCA: Linear combination of input features maximising the variance

TICA: Linear combination of input features maximising time autocorrelation
VAMP: Variational approach for Markov Process, true for non-equilibrium data

TICA: J. Chem. Phys. 139, 015102 (2013);
VAMP: J. Chem. Phys. 150, 194108 (2019)




Discretisation
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parameter optimisation. It is necessary to spend a good

: Dimensionality reduction and discretisation require a lot of
amount of time on hyper parameter optimisation.
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The count matrix

The countmatrix contains the number
— C  of times a transition from state / to
state J Is observed.

>

discrete state
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Transition matrix estimation

The transition matrix contains

conditional probabilities, of going
_ T from state i to state |.

Usually, a reversible estimation is

used to ensure detailed balance.

piP ij = //ijP ji

Writing the transition matrix as a Markov jump process:

T (1) = P[x(t + 7) € S;x(t) € 5i]

& So what is a conditional probability?

22
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Conditional probabilities

What is the probability of rolling
a die

and its value is less than 4,

P(A N B)
P(A)

PA|B) =

knowing (given) that the number is odd.

Id
P(B | PO evi en,ce
P(A|B) = PB) Bayes’ theorem
hypothesis

Q% THE UNIVERSITY

A\ of EDINBURGH



Reversible Transition matrix estimation from counts

Objective: find the most likely reversible transition matrix, based
on the observed counts using Bayes

P(B|A)P(A) evidence —— Observed counts

P(B) hypothesis — Transition matrix

Likelihood

—— Eme)- [

We use log-likelihoods instead: @ =1logP(T|C) = ch log t;;

Maximise the log-likelihood, by taking its derivative and using the constraint, that
detailed balance must hold, i.e. 29 _

0

8@ Cij + Cji C; Cj
8%-7; wjz' €I, ﬂij

Prinz, J.-H. et al (2011) Markov models of molecular kinetics: Generation and SR THE UNIVERSITY
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Transition matrix estimation

T,j(7) = Plx(t +7) € Sjlx(t) € S

Obtaining error estimates on transition matrices and
& observables taken from them will be covered in more detail in

the afternoon.




The Prinz potential
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Varying the lagtime

Tii(1) =Px(t+ 1) € 5;|x(t) € S;]

' varying the

. lagtime

The transition matrix is:

- a stochastic matrix (rows sumto 1)

- has interesting properties that let us understand
stationary and dynamic behaviour of the system
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The transition matrix has lots of interesting properties
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Obtaining timescales from the MSM
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Prinz, J.-H. et al (2011) Markov models of molecular kinetics: Generation and

Validation. J. Chem. Phys., 134 . p. 174105.



Identifying dynamic properties from the MSM
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Validation with the Chapman Kolmogorov test

T(kt) = T(T)k
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free energy / kT

timescale / steps

More validation

| CK test!
Build more than 1 MSM! 1.0
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Coarse graining with PCCA

»DENATURED* (A)
) )8 PCCA++
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Committor

Or hidden Markov
Models can be used for

coarse graining

Noé et al. PNAS, 106, 19011 (2009)
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Transition paths and MFPT
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MSM what you should also know....

\‘ Reversible transition matrix estimator is one of many estimators
- that have been developed for estimating transition matrices,
W there are different/better approaches available

Variational approaches have been used to try and
directly approximate the eigenfunctions of the

propagator Q Nuske, Mey, JCTC 10 (4), 1739-1752

Network lob Network lobe

Input X,

Input layer (. ® ® o 0)
(o @ 0 o)

Hidden layers

Neural networks can be used to learn and

Output layers (® o) Optlmlse MSMS
Output %o, \ / 14(%,..)
Merged layer |ﬁ
VAMP score Mardt et al., Nature Communications 9, (2018)
Dimensionality reduction and clustering of RN,
relevant data is still an open research 1 ,.';::ié’ 5 /
problem. e
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Thank you
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